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Abstract—This paper presents Fairy: a modular system that
augments any Total Order Broadcast (TOB) protocol with
fairness properties, namely input (request) causality and sender
obfuscation. With these properties, Fairy helps to prevent front-
running attacks where an adversary can interfere with the order
of requests depending on request payload and sender identity,
allowing for substantial application-level consequences.

Fairy leverages Trusted Execution Environments (TEEs) to
implement fairness on top of a TOB-based ordering service. Fairy
collocates TEEs with ordering service nodes effectively making
them run as trusted proxies of actual TOB clients. TEEs help
Fairy to achieve both input causality and sender obfuscation —
previous related systems addressing only input causality.

We evaluate Fairy on top of a recent, efficient Byzantine Fault-
Tolerant (BFT) TOB protocol and compare it to state-of-the-art
BFT TOB with input causality. We show that Fairy improves
state-of-the-art throughput by 66% and reduces latency by 50%.

Index Terms—total order broadcast, trusted execution, front-
running attacks

I. INTRODUCTION

Total order broadcast (TOB) is a fundamental building block
for implementing replication in fault-tolerant distributed sys-
tems. Recently, research in Byzantine fault-tolerant (BFT) [24]]
total order protocols has been intensified, since they are a core
technology in decentralized blockchain and distributed ledger
systems, e.g., Hyperledger Fabric [4], responsible for main-
taining identical replicas of the ledger of requests across all
participants. In a nutshell, in a distributed setting, TOB guaran-
tees that all nodes establish a total order in which requests will
be processed and executed, i.e., applied to the replicated state.
This is the basis of guaranteeing consistent state replication in
state-machine replication (SMR), blockchain, and distributed
ledger systems.

However, total order broadcast does not guarantee that
the order of request execution is the same as the order in
which requests are submitted, which can be critical for some
applications. In particular, revealing the content of a request
without establishing in advance the order of execution of the
request opens a surface for front-running attacks [26]]. Reiter
and Birman [32] give such an example of a front-running
attack for a stock trading service. Assume a distributed service
that trades stocks, and two clients: Alice and Mallory. Alice
issues a request to purchase shares of stock. After discovering
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the intended purchase, a corrupt node colludes with Mallory
to issue a request for the same stock. If Mallory’s request is
executed first, the demand for the stock increases, inflating the
value for the purchase of the stock for Alice’s request.

In the example above, the invocation of Mallory’s request
depends on the content of Alice’s request. We refer to such a
dependency as a causal dependency. On a high level, causal
TOB prevents a causal dependency of two requests before the
total order of the requests has been established.

We extend the front-running attack definition to cover a
wider range of attacks. Assume now that Mallory is aware
that Alice will purchase stock of some company. Mallory
now waits to see Alice’s transaction with the stock service
before acting as in the previous example to inflate its price.
The information that Mallory used here is the identity of the
sender of the request. To prevent such an attack, total order
broadcast should hide the identity of the sender. We refer to
this as sender obfuscation.

In traditional markets, such behavior is potentially punish-
able, e.g., as some form of insider trading. However, with
the rise of blockchain systems, as well as digitization in
general, opportunities for front-running attacks have increased.
Examples include bidding for domain names, ICOs, gambling
services, and decentralized exchange services [18]]. In such
use cases, the traditional centralized legal repercussions are
not only incompatible with the decentralized nature of such
systems but may also be impractical, since users are often
pseudonymous or anonymous.

To that end, preventing front-running attacks is a more
natural solution. Existing approaches use threshold encryp-
tion [11f], [16] or commit-reveal schemes [17] to add input
causality to total order broadcast. The former require a trusted
key setup and expensive per transaction cryptographic opera-
tions while the latter prove prone to malicious clients who can
block the system’s progress.

In this work we leverage modern hardware-aided Trusted
Execution Environment (TEE) technology, such as Intel Soft-
ware Guard Extensions (SGX), to enhance BFT total order
broadcast protocols with input causality and sender obfusca-
tion in a modular and efficient way. This technology allows
applications to run securely in an isolated environment and
thereby protect the execution integrity and confidentiality of
the application. With additional support for remote attestation,
the use of TEEs enables trust to be established in an applica-



tion executed remotely on a potentially misbehaving host.
Our contributions can be summarized as follows:

o We introduce fair total order broadcast (FTOB) abstraction
which extends TOB with two fairness properties: input
causality and sender obfuscation.

« We introduce Fairy protocol which implements FTOB in a
modular way on top of TOB. Fairy can be built on top of
any TOB protocol with external validity [[10].

« We implement Fairy using Intel SGX as a TEE on top of
state-of-the-art Mir-BFT [35]. We show that Fairy outper-
forms state-of-the-art causal TOB and introduces an over-
head of approximately 20% to baseline TOB performance.

The rest of this paper is structured as follows. Section
introduces the system model and our assumptions, as well
as TOB and FTOB abstractions. Section discusses in
detail front-running attacks and their mitigations. Section
introduces our extended model with trusted execution envi-
ronments and gives an overview of how we achieve FTOB
with this setup. Fairy details are given in Section [V] and
correctness arguments in Section Section discusses
how we implement Fairy with Intel SGX on top of Mir-BFT.
Section studies the performance of Fairy focusing on the
overhead it introduces to the underlying TOB protocol and
comparison to existing solutions. Section compares our
work with existing literature. Section [X] concludes.

II. MODEL AND ABSTRACTIONS

Our system comprises a set Nodes of n nodes and a non-
intersecting set of client processes Clients of arbitrary size.
Each node hosts a TOB process. We assume a public key
infrastructure (PKI) under which the processes (TOB and
client processes) are identified by their public keys. We further
assume that all TOB processes’ identities are lexicographically
ordered and we use a bijection set I = [0...n — 1] to argue
about identities.

We assume a dynamic adversary which in every execu-
tion may control up to f nodes, such that f < %, and
any number of clients. The adversary may fully control the
operating system of the nodes and thereby tamper with the
execution and the memory of TOB processes and clients it
controls. The adversary can also arbitrarily drop, delay, or
modify messages sent from and to the nodes it controls.
Finally, we assume a computationally bound adversary which
cannot break cryptographic primitives.

The TOB processes implement a Byzantine fault-tolerant
total order (atomic) broadcast service, which is extended
with the property of external validity [[11]. A process acting
as a client to TOB invokes TOB for some request r by
sending a message (TOB — CAST,r) to TOB processes.
For simplicity we say the client broadcasts r. TOB for
request r terminates for a process p once p outputs a message
(TOB — DELIV ER, sn,r,m), where sn is a monotonically
increasing sequence number and 7 some proof. For simplicity,
we say p delivers r with sequence number sn and proof 7.
A protocol solves TOB with predicate @ if it satisfies the
following properties:

TOB1 Integrity: If all clients are correct and a correct process
delivers r then some client broadcast r.

TOB2 Agreement: If two correct processes deliver requests r
and ' with sequence number sn, then r = 1/,

TOB3 No-duplication: If a correct process delivers request r
with sequence numbers sn and sn’, then sn = sn/.

TOB4 Totality: If a correct process delivers request r, then
every correct process eventually delivers 7.

TOBS Liveness: If a correct client broadcasts request 7, then
some correct process p eventually delivers r.

TOB6 External Validity: If a correct process delivers a
request r with a sequence number sn and a proof 7, then
Q(r, ) holds.

Next we define fair TOB abstraction, or simply FTOB.
A client process with identity id invokes FTOB for some
request 7 by sending a message (FTOB — CAST, F(id,r))
to nodes in Nodes, where F : {0,1}* x {0,1}*2 — {0,1}!
and where ki (resp., ko) is the bit-length of the client’s
identity (resp., request) and where [ is a security parameter.
For simplicity we say the client f-broadcasts r.

FTOB for request r terminates for a node 7 in Nodes once @
outputs a message (FTOB — DELIV ER, sn,r), where sn
is a monotonically increasing sequence number. For simplicity
we say ¢ f-delivers r with sequence number sn. FTOB satisfies
the properties of total order broadcast TOB1-5 (note External
Validity is not needed) and further satisfies the properties
of input causality and sender obfuscation. We define input
causality similarly to the non-malleability property in [[15] and
sender obfuscation as the indistinguishability of invocations
by correct clients. In the following, we first define causal
dependency which we need to define input causality. Then
we proceed with defining FTOB properties.

Definition 1 (Causal dependency). For a request r, let the
adversary know F(r,id). Then we say that a request 1’
causally depends on request v and symbolize v < 1/, if the
adversary can choose r' as some function of v (r' = f(r'")),
where " = r with non-negligible probability.

FTOB1-FTOBS: same as properties TOB1-TOBS.

FTOB6 Input Causality: Let some correct node f-deliver
r and r’ with sequence numbers sn and sn’ respectively.
If » < »’ and if a correct client f-broadcast r, then sn < sn'.
FTOB7 Sender Obfuscation: Let two correct clients with
identities id and id’, id # id’, f-broadcast requests 7 and r’
respectively such that some correct node i f-delivers r and r’
with sequence numbers sn and sn’ such that sn < sn/.
Then the adversary cannot distinguish ¢ = F(r,id) from
¢ = F(r',id"), except with negligible probability, before r
is f-delivered by any node.

Note that the adversary given function F' can always distin-
guish an invocation (FTOB — CAST, F(id,r)) of a correct
client id from an invocation (FTOB — CAST, F(id',r")) of
a malicious client of whom the adversary knows id’ and 7’.
FTOB only guarantees the obfuscation of a request from a
correct client among other requests from correct clients.



III. THE PROBLEM OF FRONT-RUNNING ATTACKS

On a high level, with the term front-running attack we refer
to the misuse of information about a request by an adversary
in order to first create and execute some other request that
displaces, suppresses, or precedes the original request [[18]]. In
this section we define front-running attacks, discuss how front-
running attacks are addressed in the literature, and justify why
input causality and sender obfuscation properties of our FTOB
are relevant to preventing front-running attacks.

We define a front-running attack as follows.

Definition 2 (Front-Running Attack). Let S be a service that
executes client requests and let r be a request. An adversary
successfully performs a front-running attack if it can create
another request ' = f(r), where [ is some function, which
is executed from S before r with non-negligible probability.

We consider a service that implements a TOB protocol
as introduced in the previous section, where clients invoke
TOB by submitting their requests to the TOB nodes. Total-
ity (TOB4) and liveness (TOBS) properties guarantee that the
request from a correct client will eventually be delivered and
executed by all correct nodes. Agreement (TOB2) property
guarantees that all correct nodes will execute the request in
the same order. However, TOB does not guarantee that the
order in which clients submit their requests is the same as the
order in which they are delivered. A malicious node can delay
some request 7 of interest to favor some other request with a
causal dependency on r, effectively performing a front-running
attack. This is indistinguishable from the request r being
delayed by the network and makes it impossible to deduce
the order in which two different requests were sent to the
system. Note that this differs in the crash fault-tolerant (CFT)
model, where First-In-First-Out (FIFO) order, also referred to
as CFT causality [23]], can be achieved, for instance, by using
a vector clock [19].

In the BFT model, as discussed in Section [} input causal-
ity (FTOBO6) is a non-malleability property that requires the
client to hide the request from the nodes of the service
and the property is satisfied if the adversary who controls
the Byzantine nodes cannot create some other request 7’ as
a function of r before r is delivered with some sequence
number. Input causality prevents front-running attacks as the
adversary can only create a causal dependency on r after it is
delivered with some sequence number sn. Thus, any other
request 7/, such that r < 7/, can only obtain a sequence
number sn’ > sn, forcing 7’ to be executed after 7.

Hiding the request from the nodes suggests a non-malleable
cryptographic primitive. Reiter et al. [32] introduced causal
TOB with threshold encryption, which was later refined
in [11]. In a nutshell, the client encrypts the request with a
public key of the service and invokes TOB with the encrypted
request. Only after the encrypted request is delivered, do
the nodes decrypt it with their key shares and combine the
decryption shares to obtain the request.

While this scheme satisfies input causality, it requires a
distributed key setup. Moreover, threshold decryption and

decryption share combination per request are computationally
expensive. These issues were addressed by Duan et al. [|17]]
by replacing the threshold encryption with a non-malleable
commit reveal scheme with associated data. The clients first
invoke TOB for a commitment to the request along with a
unique identifier linked to their identity and only after the
commitment is delivered with the same unique identifier, do
the clients invoke TOB for the decommitment of the request.
However, in this scheme faulty clients can block progress.
To preserve input causality it is necessary that requests are
delivered in the same order as their commitments. Even if
a single client crashes or is malicious and, thus, does not
submit the decommitment, the protocol blocks. The authors
suggest a periodic garbage collection of commitments whose
decommitment is pending. This, however, requires strong
synchrony assumptions; otherwise, it cannot be guaranteed that
the nodes do not discard the commitment of some request that
is delayed by the network.

In this work, we introduce a solution that is efficient, in
the sense that it does not require threshold decryption nor
extra rounds of TOB, such that it guarantees input causality
even with Byzantine faulty clients and without imposing extra
synchrony constraints.

Another aspect we examine w.r.t. front-running attacks is the
sender’s (client’s) identity. As discussed in Section |I} leaking
the sender’s identity, combined with external information, such
as previous client’s requests, can be used by an adversary to
launch a front-running attack. We, therefore, extend Defini-
tion [2] with the sender’s identity.

Definition 3 (Extended Front-Running Attack). Let S be a
service that executes client requests and let v be a request
from a client with identity id. An adversary successfully
performs a front-running attack if it can create another request
r' = f(r,id), where f is some function, which is executed by
service S before r without negligible probability.

Previously mentioned mitigations of front-running attacks
do not take this aspect into account. In fact, for the commit-
reveal scheme in [17]] verifying that client’s identity matches
the associated data of the commitment is integral to the
protocol to prevent unauthorized parties flooding the system
with invalid commitment messages. Similarly, the solution
in [11] cannot authenticate the requests before combining the
decryption shares unless the client’s identity is attached to the
request in cleartext.

In Section [II| we introduced the property of sender obfusca-
tion (FTOB7) to build the FTOB abstraction, which combined
with the input causality property prevents the extended front-
running attack, since the adversary cannot distinguish the
senders of different requests. Note that the probability of the
adversary performing a successful extended front-running at-
tack becomes negligible with the sender obfuscation property,
assuming that the number of clients the adversary controls is
bounded, which, in practice, constitutes a reasonable assump-
tion. Moreover, anonymizing the client on the network level
is out of the scope of this work. Complementary solutions



can be deployed, e.g., communication over Tor [2f]. Such a
deployment has been demonstrated in Honeybadger BFT [30].

Our protocol, as we discuss in the next sections, imple-
ments FTOB by satisfying both input causality and sender
obfuscation on top of TOB by leverage trusted execution
environments (TEEs). In a nutshell, a request r, submitted to
TOB, is encrypted in a way that it can only be decrypted by
the TEE once r has been delivered. That is, the TEEs disclose
(the plaintext contents of) r to the nodes of the system only
after acquiring proof that the request is assigned a sequence
number sn, such that r will be eventually delivered with
sequence number sn by all correct nodes. We guarantee sender
obfuscation by also encrypting information pertaining to the
client’s identity until proof of delivery is provided to the TEEs.
Notably, Fairy can obfuscate clients’ identity without the
danger of them flooding the system with invalid requests. This
is because the integrity and the authenticity of the requests are
checked inside the TEE before TOB. Additionally, application-
specific validity checks could be performed inside the TEE but
this is beyond the scope of this work.

IV. TRUSTED EXECUTION ENVIRONMENTS

TEEs provide an isolated environment for executing appli-
cations securely. TEEs guarantee confidentiality and integrity
to the application code and data within the execution context.

Remote attestation. In order to establish trust in a TEE-
based application, the code must be initially inspected by the
participants (processes), i.e., the clients and TOB nodes, and
then compute a cryptographic hash ¢ over the application
code, which is further used to identify the code running inside
the TEE. During the lifetime of a TEE, the processes can run
a remote attestation protocol, see Section that attests
the code the TEE is running and details about the execution
environment. In particular, processes can verify that the TEE
runs the code matching the code identity they have inspected
initially. In other words, with remote attestation, processes
can verify that the TEE which they are interacting with is
unmodified and runs the expected software. Moreover, the
attestation protocol also allows additional data to be embedded
into the attestation, which is particularly useful when attaching
dynamic data to the attestation, for instance, a public key that
is generated during launching. This key generation may be part
of the application running in a TEE. Since the memory of a
TEE is protected and can only be accessed by the application
code within the TEE, all code and data, including the secret
keys, are protected against unauthorized access. Finally, TEEs
provide access to a secure random number generator.
TEEs in our model. We extend our system model described
in Section [ to include TEEs as follows. Each node runs along
with the untrusted TOB process and a trusted process inside
a TEE. Like the other system processes (clients and TOB),
processes running in the TEEs are also identified by a public
key under a PKI.

We assume a typical fault model for TEEs: an adversary
may completely control, including physical access to, the host
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Fig. 1. Invocation of TOB and FTOB abstractions.

system. This means the applications prior to TEE entry, the
operating system, as well as the hypervisor are untrusted.
However, the adversary does not have control of the execu-
tion and memory inside the TEE. The adversary may also
have control of the communication to and from the trusted
execution environment. Finally, TEEs run in user space and
depend on the cooperation of the host system, which means
a compromised host can launch denial-of-service attacks, e.g.,
by not starting, not entering, or stopping the trusted processes.

V. FAIR TOB WITH FAIRY

In this section, we describe Fairy distributed trusted setup
and protocol. We design Fairy in a modular way so that it can
be easily implemented on top of every protocol that satisfies
the TOB properties we defined in Section |lI} The key to our
modular design is that the process that runs in the TEE of each
node acts as a trusted proxy to the clients of the system. For the
rest of this work we will, therefore, refer to the process inside
the TEE as trusted client proxy, or as TPC for short. TPCs
act as clients to the underlying TOB protocol, invoking TOB
on behalf of the clients, after decrypting and authenticating
the encrypted clients’ requests. TPCs are also responsible for
disclosing client requests in cleartext to their hosting node,
after receiving a proof that the request is delivered by TOB.
Figure || illustrates how the processes interact using the TOB
and FTOB interfaces.

A. Trusted setup

1) Trusted public keys and identities: We assume a standard
PKI with a root certificate C' Ry, signed by a trusted Certificate
Authority (CA). We could also argue about multiple root
certificates signed by multiple CAs by replacing C'Ry with
a vector of certificates, but without loss of generality, we
will assume only one for simplicity. Each process ¢ in the
system (i.e., TOB, client, and TPC) is equipped with a public-
private key pair PK;,SK; used for authentication. The public
key PK; is also used as the identity of the process. We assume
that each PK; is issued with a certificate signed by CRjy.
Each node, upon bootstrapping its TPC, provides the TPC
with C'Ry. Each TPC is equipped with a public-private key
pair EK;,DK; for encrypted communication with the clients.

2) Remote Attestation: Any processes ¢ can at any time
perform remote attestation with any TPC j to verify that a
genuine TEE protects the intended code (identified using ¢)
and its data. In detail, the attestation cryptographically binds
the TPC state to the TEE, in particular, the public keys of the
TPC and the root certificate provided during bootstrapping.



The attestation protocol briefly works as follows: (1) Pro-
cess ¢ computes h = Hash(C'Ry), keeps h; picks a nonce z and
sends to host message (RA, z). (2) The hosting node forwards
(RA, z) to the TPC j. (3) TPC j computes h'=Hash(C Ry) of
the root certificates it has stored locally. (4) TPC j creates an
attestation including h’, Hash(PK;), Hash(EKj}), z, and its
code identity ¢’. (5) TPC j returns the attestation, PK j» and
EK; to process 4. (6) Process ¢ verifies that the attestation is
“correct”, that is, it has been produced by a genuine TEE and
that it corresponds to h == h/, Hash(PK), Hash(E K ), and
the nonce z initially sent. Moreover, the client checks that the
attestation contains the expected TPC code identity ¢.

Note that a malicious node may intercept and tamper with
the communication between its TPC g and process p, but any
modification on the attested data will be detected by g.

The trusted setup described here assumes static membership.
To support dynamic configuration changes, Fairy can be easily
extended. For instance, nodes can provide the updated root
certificate(s) and a revocation list to their TPC and signal to
the clients to re-perform attestation.

3) Client registration: Each client ¢ needs to register a
symmetric key SymK,. with all TPCs in correct nodes. The
client will use the symmetric key to encrypt the requests it
submits to the TPCs (we use RSA-OAEP encryption). Each
client further needs to register a one-time client’ identity
(OTIDg) with each TPC. The client sends OTIDy in a
future message in cleartext along with the first request r to
identify with the TPC, since request r, which includes client’s
long term identity, i.e., the public key, is encrypted. OTI Dy,
with k£ > 0 is renewed by the client with every new request.

Client registration starts with the client asking for a re-
mote attestation of the TPC public keys and root certificate
the TPC uses with the protocol described in Section [V-AZ]
Client c then encrypts the registration information Reg =
(SymK,.,OTIDy, PK,.,Cert.,nonce) and sends a message
(REGISTER, E(Reg)Ek,)o. to each TPC 4, where o, is the
signature of the message under the public key PK . of client c,
Cert. is the certificate of PK . signed by the root certificate,
and E(.)gk, is the encryption under the public key FK.

Upon receiving the registration, TPC i verifies that Pk,
corresponds to Cert., which must be signed by the root
certificate C'Ry. Next, it calculates a commitment z to the
client’s symmetric key SymK .. We use a hash function (SHA-
256) denoted by H(.) to implement z as a pseudorandom
function: z = H (nonce||SymK_.). TPC i, then, signs z with
its private key SK; and sends it as a response to the client.
The client waits and collects 2f + 1 valid signed responses
and broadcasts them again to the TPCs. TPCs verify that the
signatures on the responses that the client collected are valid
and also that the commitments match. Only then can TPCs
register the client’s symmetric key under OT1 D).

The 2f 4+ 1 matching responses indicate that the client
registered the same symmetric key with 2f + 1 TPCs, among
which at least f + 1 are correct. This is crucial, as we will
see in the next sections, to guarantee totality for FTOB even
with faulty clients.

1: Client sends private request

4c: Node responds
Node

Node Node
3a: TPC
4b: TPC

: 1 invokes
validates t and TOB

ﬁ reveals request

3b: TOB

Fig. 2. Overview of the four phases of Fairy protocol: (1) re-
quest submission, (2) request processing, (3) request ordering,
and (4) request disclosure and delivery.
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B. Fairy protocol execution

We split the protocol into four phases: (1) request sub-
mission, (2) request processing, (3) request ordering, and (4)
request disclosure and delivery.

In the first phase, the client invokes FTOB with an encryp-
tion of request r under the symmetric key the client shares with
TPCs. We refer to the encrypted request the client submits as
private request, because it also hides the client’s identity. In
the second phase, the TPC, upon receiving the private request,
decrypts it and verifies its authenticity. In the third phase, the
TPC creates a new request rrpc having the private client
request as payload and invokes TOB for rrpc. In the fourth
phase, after some node ¢ delivers rrpc with proof 7 and
sequence number sn to the TPC hosted by the same node,
TPC verifies m and discloses (reveals) r to the node. Finally,
the hosting node can f-deliver r with sn and respond to the
client. Figure [2 summarizes the phases of Fairy protocol.

In the rest of this section we provide the protocol details of
each phase. Algorithm [I]presents the client implementation of
registration and FTOB invocation. Algorithm [2] presents client
registration handling, request processing, and request disclo-
sure implementation in TPC. Finally, Algorithm [3| presents the
node’s interface implementation to the TOB process and TPC.

1) Request submission: Client request r is represented
as a message (REQUEST,o,t,c,nonce) where o is the
request payload (operations to be executed), ¢ is the client’s
timestamp, a monotonically increasing sequence number per
client, c = PK, the client’s identity and nonce a random
number used only once for entropy. Two requests ry, 72
are considered equal, and we write r; = ro, if and only if
r1.0=1r2.0 \r1.t =19t AT1.c =Tr3.C.

To invoke FTOB for a request r with timestamp ¢, client ¢
first waits for 2f + 1 responses that request ¢ — 1 has been f-
delivered. This, because of FTOB liveness property, guarantees
that a request with timestamp ¢ —1 will eventually be delivered
by all correct nodes and therefore all correct nodes will be
able to process the request with timestamp ¢. We say that the
client submits requests in a close loop. The client wraps r
in a private request Pr(r,c) = AE((r,OTIDy11,I) gymk.)-



OTIDy is the one-time client’s ID for request with times-
tamp k and II is the Merkle-tree root of the keys of the
most recent configuration of TOB processes the client c is
aware of. AE(.)symk, denotes authenticated encryption under
the client’s symmetric key. Pr implements the function F' of
FTOB abstraction defined in Section [lIl Then the client sends
a message (FTOB — CAST, Pr(r,c),OTID;) to all nodes.

2) Request processing: Upon receiving a FTOB — CAST
message, each correct node in Nodes forwards the message to
their TPC. TPC uses the OT'I D, field to retrieve the client’s
symmetric key and decrypt and authenticate the encrypted part
of the message. TPC checks if a request 7’ of the same client
with timestamp r'.t = r.t — 1 has already been f-delivered,
otherwise it drops 7.

TPC then checks if II matches the identities of Nodes it is
aware of. If not, TPC drops r and notifies the client. The
identities represented by II are used in the delivery phase
to validate the proof m of TOB. If II does not match the
membership in Nodes the TPC knows about, either the client
is not up to date, or the node has not updated their TPC.

3) Request ordering: For each client request r, each TPC @
calculates PID which is a unique private identifier of re-
quest 7. Then TPC i creates a new request message rrpc
represented by a message (REQUEST, 7, t;, PK;),, where
7 = (Pr(r,r.c),OTID, PID), PK;, is the public key of i, o;
a signature of the request under PKj;, and ¢; is the timestamp
of TPC ¢, a monotonically increasing sequence number per
TPC, not to be confused with client’s timestamp r.t.

The identifier PI D should not reveal any information about
request 7 but should identify r uniquely. We use a hash
function (SHA-256) to implement PID as a pseudorandom
function, with the nonce of request r as a secret: PID =
H (r.noncel|r.o||r.t||r.c).

Two requests rq, ro are considered equal, and we write
r1 = 19, for TOB if and only if ry.pid = ry.pid. We do not
use t; or PK; to argue about request equality in 7O B, since
different TPCs can invoke T'OB for the same request r.

TPC i invokes T'O B for request rp pc by sending a message
(TOB—CAST,rrpc) to the TOB process j which is hosted
by the same node as 3.

4) Request disclosure: Upon TOB process j is delivering
request rppc with sequence number sn and proof 7, 5 sends
a message (I'OB — DELIVER, sn,rrpc,m) to the TPC k
hosted by the same node as j. TPC verifies first that it
has already disclosed sequence number sn — 1. Disclosing
sequence numbers in order guarantees that TPC is up to date
with the state of correct clients. TPC verifies proof m for
the membership of Nodes justified by II. TPC k uses the
OTID in rppc to retrieve the symmetric key that decrypts
the private request in rrpco. TPC then asserts that the re-
quest timestamp ¢ is the next timestamp of the previously
delivered request for the same client and updates the OT'ID
that points to the client’s symmetric key. The TPC reveals
the decrypted request r to the node, only if 7 is valid.
The node can now output (FTOB — DELIVER, sn,r),
terminating FTOB for request 7. Otherwise, the node outputs

(FTOB—DELIVER, sn, 1) and asks the client to resubmit
the request.

Notice that if the system configuration has changed to a con-
figuration with Merkle-tree root IT' # II between the request
processing and request disclosure, TPC cannot validate 7 and
aborts. It is important that the client sends the reference of
the most recent configuration because the TPC cannot trust
the node to provide it. A TPC with a non-valid view of the
system configuration could be tricked into disclosing clients’
requests with an invalid proof, such that the request will be
eventually delivered, therefore, potentially violating the input
causality property. We assume here, that a correct client is
always aware of the correct system configuration and that the
system configuration does not change faster than the clients
learn about it. We also assume that all correct nodes have a
consistent configuration.

If k cannot retrieve the symmetric key that decrypts the
private request in 77 pc because no client has registered to k
with the otid in rppc or because the key the client registered
with is not the same, the node hosting £ has to fetch r
from another node. Notice that in-order disclosure ensures
that this inconsistency can only happen for the first request a
client submits with a fresh symmetric key but the registration
protocol ensures that there are always f + 1 TPCs on correct
nodes that have the same symmetric key with TPC <.

VI. FAIRY CORRECTNESS ARGUMENTS

In this section we sketch correctness arguments on Fairy
satisfying FTOB properties defined in Section|[[I] Line numbers
refer to Fairy pseudocode.

Integrity (FTOBI1) is achieved with client authentication. On
each node, each client request, before being f-delivered, is
authenticated by the TPC, using authenticated encryption in
the request disclosure phase (Algorithm [2} line 39) and we
trust TPC to be correct. The symmetric key used for authenti-
cated encryption is authenticated by TPCs during registration
with client’s signature authentication. If TPC in node ¢ does
not have the client’s symmetric key for authenticating and
disclosing the request in the disclosure phase, node ¢ will fetch
the request from another node j, signed by TPC in node j,
which we also trust to be correct.

Agreement (FTOB2) is inherited from the underlying TOB
protocol. Namely, if a request is f-delivered with some se-
quence number sn, it has been delivered by TOB with the
same sequence number.

No-duplication (FTOB3) is trivially achieved because of in-
order disclosure of requests (see Algorithm [2] line 42), before
f-delivery. Note, it is possible that TOB processes deliver the
same clients request more than once wrapped in different
TPC requests, since the client submits to more than one node
for robustness. Let’s assume that there is a request r with
timestamp ¢ that is f-delivered with sequence number sn and
later r is again delivered by TOB with sn’ > sn. No TPC
will disclose the request for a second time, because they have
already disclosed a request from this client with the same or
a higher sequence number (see Algorithm [2] line 43).



Algorithm 1 Fairy implementation at the client C;.

Algorithm 2 Implementation of Fairy at the TPC T

1: state

2t // timestamp, initially O
3. otidg // current one-time id
4:  otidi 1 // next one-time id
50 kg /I current symmetric key
6:  (pki, ski) /I client public/private key
7. (cert) /I pk; certificate
8:  Nodes // the set of nodes
9: TPCs // set of TPCs and their attestations
10: f // fault tolerance
11: RegResp /I set of registration responses
12: reg // latest registration
13:

14: struct Registration contains

15: otid // initial one-time id
16: key /I symmetric key
17: cert // public key certificate
18:

19: struct Request contains

20: o /I payload
21t /I timestamp
22: ¢ /I client’s public key
23: nonce /I random number used only once
24:

25: function register()
26: for (7, attestation) in TPC's do

27: assert verify (T, attestation) /1 verify TPC attestation
28: RegResp < 0 // initialize response set
29: ek, < attestation /I TPC public key
30: otidy < rand() // initial one-time id
31: ki < key-gen() /I symmetric key
32: nonce < rand()

33: r < Registration(otid,, k;, pki, nonce)

34: er < encrypt(r, ek,) /I public key encryption
35: o < sign(er, pk;) /I clients signature
36: reg <— er

37: send [REGISTER, er, o, pk;] to T

38:

39: upon receiving [REGISTER-RESPONSE, resp] do
40: RegResp < RegResp U resp

42: upon |RegResp| = 2f + 1 do
43: send [REGISTER-PROOF, reg, RegResp] to TPC's

45: // FTOB invocation of operation o

46: function invoke(o)

47: TII < root(Nodes)

48: otidy 41 <+ rand()

49: nonce < rand()

50: r < Request(o,t, pk;, nonce)
51: pr < auth-encrypt(r, otidy 41,11, k;)
52: send [PROCESS, pr, otid¢] to Nodes

/I Merkle-tree root
/I next one-time id

// authenticated encryption

54: upon receiving frob-deliver from f + 1 nodes in Nodes do
55: t+—t+1
56: otidy <— otidyy1

// update timestamp
// update otid

Totality (FTOB4) is achieved by TOB Totality and the guar-
antee that there always exist at least 2f + 1 TPCs, among
which at least f + 1 on correct nodes that have the symmetric
key to decrypt the delivered request. See also Section [V-A3]
Liveness (FTOBS) is guaranteed by a correct client submitting
to all nodes. Among all nodes there exists at least 2f 41 who
have delivered the client’s previous request from the close-loop
submission (if not they ask the client to resubmit), and among
them at least f + 1 correct to invoke TOB. By TOB liveness,
the request will eventually be delivered and by the client being
correct, all on correct nodes can disclose the request.

Input Causality (FTOB6), in short, is achieved by hiding
a client request until it has proof from TOB that it can be
delivered by all correct nodes with some sequence number sn.
Notably, we use symmetric AES-GCM authenticated encryp-

1: state

2t // TPC sequence number, initially 0
3 d // last delivered sequence number
4 R /I registered client map otid — key X timestamp
5. (pkr, skr) /I ' TPC public/private key for signatures
6: (ekr,dkr) /I TPC public/private key for encyption
7 f // fault tolerance
8: Cy // root certificate
9:  Nodes // the set of nodes
10:

11: upon receiving [REGISTER, er, o, pk.] from ¢ do
12: assert verify(er, o, pk.)

13: r < decrypt(er, dkr)

14: assert verifyCert(r.cert, Co)

15: ¢ < hash(r.nonce||r.key)

16: o « sign(¢, pkr)

17: send [REGISTER-RESPONSE, ¢, o] to ¢

// client signature verification
/I decrypt encrypted registration
/I verity clients certificate

19: upon receiving [REGISTER-PROOF, er, proofs] from ¢ do

20: r < decrypt(er, dkr) /I decrypt encrypted registration
21: assert verify(r, proofs) /I 2f 4+ 1 matching proofs
22: Rlrotid] < (r.key, 0) /I store client state

24: function process(pr, otid)
: assert exists(R[otid))
26: (ke,tc) < Rlotid]
27: (r, otidpext, I1) < auth-decrypt(pr, k.)
28: assert r.t =t. + 1
29: PID < hash(r.nonce||r.o||r.t||r.c)
30: rppc < Request({pr,otid, pid),t, pkr, L)
31 t+—t+1
32: o « sign(r, skr)
33: return (r, o)

/I retrieve client state

/I decrypt the private request

// verify this is client’s next request
/I calculate unique identifier

/I increase TPC sn

35: function disclose(rrpc, sn, )
36: (pr,otid, pid) < rrpc.o
37: assert exists((R[otid])

38: (ke,tc) < Rlotid]

39: (7, otidnext, 1) < auth-decrypt(pr, k.)
40: assert verifyRoot(II, Nodes)

41: assert verifyProof(req, sn, w, Nodes)
42: assert sn=d + 1

43: assert r.t =t. 4+ 1

44: Rlotidpext]  (ke,T.t)

45: Rlotid] « L

46: d < sn

47: return r

// retrieve the priv. req. and otid from the payload

// retrieve client state

/I decrypt the private request

/I verify Merkle tree root

/1 verify proof of external validity
// assert in order disclosure

/I verify this is client’s next request
/I store updated client state

/I remove old client state

// update protocol state

Algorithm 3 Implementation of Fairy at the nodes.
upon receiving [FTOB-CAST, pr, otid) do

(rrpc, o) < process(pr, otid)

invoke TOB for [REQUEST, rrpc, 0]

function deliver(rrpc, sn, )
r < disclose(rrpc, sn, m)

1:
2:
3:
4:
5:
6:
7:  send [FTOB-DELIVER, sn, 7| to client with public key 7.c

tion to hide the request. Even though AES is malleable, the
authenticator guarantees that no tampered request can be valid
and therefore accepted by TPCs.

Sender Obfuscation (FTOB7), is achieved by hiding the
client’s identity inside the encrypted private request. The one-
time id and the unique request’s identifier, the only two fields
that are sent in plaintext, are pseudorandom, leaking nothing
about the client’s identity.

VII. FAIRY IMPLEMENTATION

A. High throughput Fairy implementation with Mir-BFT

Mir-BFT [35]], or simply Mir, is a novel multi-leader Byzan-
tine fault-tolerant TOB protocol which achieves high through-
put in large deployments (evaluated up to 100 nodes) both in



datacenters and WANs. Mir runs in parallel instances of the
classical PBFT protocol [13] by sharding sequence numbers
deterministically across multiple leaders, while multiplexing
them in a single total order. Leveraging multiple leaders, Mir
alleviates the network bottleneck which drives the performance
of single leader protocols. Moreover, Mir avoids ordering
duplicate requests by deterministically sharding requests in
buckets that are uniformly distributed across all leaders, since
eliminating duplicate requests before ordering proves critical
for maintaining high performance for multileader protocols.
The protocol maintains the liveness guarantees of TOB by
periodically rotating the bucket assignment.

Mir assumes asynchronous communication for safety and
eventual synchrony for liveness with optimal fault tolerance;
a system with n nodes tolerates up to f faults s.t. n > 3f + 1.
Fairy implementation on top of Mir inherits the same fault-
tolerance under the same synchrony assumptions.

We choose to implement Fairy on top of Mir because

of its good performance. Our modular design allows us to
easily implement Fairy on top of Mir-BFT codebase with
minor modifications. In detail, we extend the Mir client by
implementing Fairy client registration, wrapping Mir requests
in the private FTOB client request, and enforcing close-loop
request submission. We also implement our own back-end
for Mir, which forwards client registrations and requests to
the local TPC, invokes Mir with TPC requests wrapped in
Mir client requests, forwards Mir delivered batches to TPC
for the Fairy disclosure phase, and, finally, responds to Fairy
client. Both, our client and back-end implementation are in
Golang, same as Mir, but both TOB and FTOB interfaces
expect messages serialized as Protocol buffers [1]], which
allows flexibility in the language of the implementation.
External Validity. To enhance Mir with the External Validity
(TOBG6) property from Section [[IL we extend Mir implemen-
tation so that each process signs the message of the commit
phase. Mir liveness invariant, same as PBFT, is that if a correct
process commits, and therefore delivers a request, eventually
all correct processes will deliver the request. Collecting f + 1
signatures as proof m guarantees that at least one of them
is from a correct process, which in turn guarantees that the
request will eventually be delivered with sequence number sn
by all correct processes.
Duplication Prevention. To achieve a highly performant
FTOB, we need to limit the impact of duplicate requests,
since, as is demonstrated in [35], for multi-leader protocols
duplication prevention is critical for performance. Mir elimi-
nates ordering of duplicate requests; however, this translates
to eliminating duplicate TPC requests, as TPCs invoke Mir as
its clients. Since a Fairy client submits a private request to
multiple TPCs for robustness, different TPCs may invoke Mir
with their requests for the same client private request, which
from Mir’s point of view are different, since each TPC has its
own public key and is viewed as a different client.

Duplicate Fairy requests are eliminated in disclosure phase.
To maintain, though, the high throughput of Mir we eliminate
duplicate Fairy requests also during ordering. To achieve this

we modify the Mir request equality predicate for filtering
duplicate requests as described in Section Two requests
r1, 7o are considered equal, if and only if 71.pid = r2.pid. We
must point out that this equality predicate can be effectively
used by Mir to prevent ordering of duplicate requests only with
infinite memory, by keeping all request identifiers that have
ever been proposed. Mir-BFT, as any practical protocol, peri-
odically garbage-collects its state with a Checkpoint protocol.
While we can trust that a TPC will not invoke Mir-BFT for a
Fairy request that is already known to be delivered, a malicious
node can withhold the delivery of a request from their TPC,
or can reset the TPC forcing it to lose its state. This can trick
the TPC into submitting the same request multiple times and
if this occurs in different Checkpoint periods it will result in
duplication. Section [VII-B|discusses how to avoid such attacks
on the TPC state. Notice that this attack can introduce only
one duplicate for each request within each Checkpoint period.
More importantly, this performance attack is detectable, since,
after revealing the content of the Fairy request, the correct
processes can identify the duplicate requests proposed from
Byzantine processes that are delivered out of order. It is also
possible for a malicious client to submit the same request
with a different nonce value for each TPC, creating therefore
different private identifiers for the same request. However,
this performance attack is also detectable post ordering and
malicious clients can be blacklisted.

Batching. Mir uses batching to amortize the cost of protocol
operations per request, a common performance optimization
technique. A leader groups incoming requests in a batch
and orders the batch with the same sequence number. A
deterministic order of the requests within the batch (e.g., lex-
icographical) results in a unique total order of requests. Since
Fairy builds on top, it inherits the batching mechanism and
maintains the requests’ batching for the disclosure phase. This
further helps Fairy amortize the cost of signature verification
of the disclosure phase.

B. TPC implementation with Intel SGX

The trusted execution environment (TEE) used in this work
is Intel’s Software Guard Extensions (SGX) [28]], though the
general concept can be applied to other TEEs as well. Intel
SGX is an instruction set extension of x86 processors which
allows the creation of trusted compartments called enclaves.
Intel SGX ensures the confidentiality of code and data via
transparent memory encryption, i.e., code and data are only
available in plaintext in the CPU package, while checksums
are used for integrity checks. Enclaves can only be entered
or exited using pre-defined entry points via ecalls into the
enclave and ocalls to the outside. All other access, even from
privileged software, is prevented, as only the code in the en-
clave is assumed to be trusted. Enclaves can run arbitrary code
with the exception of system calls, which require input from
the untrusted OS. There exist several SDKs to facilitate the
enclave life-cycle management and memory management, and
both C/C++ and Rust are supported programming languages.
Fairy TPC implementation is written in Rust.



The amount of memory available to all enclaves in a system
is 128 MB (92MB in practice). As we discuss in Section [V]
TPCs persist per client state to map client’s one-time identifier
(OTID) to their symmetric key and latest request sequence
number. This imposes a limit on the number of clients the
TPC can serve. For example, assuming both fields have a
32 bit representation, the enclave can serve up to 11.5 million
clients. To server more clients, TPCs can garbage collect state
pertaining to stale clients and force them to register again with
a fresh symmetric key.

TEE technology, such as Intel SGX, helps to protect con-
fidentiality and integrity; still, some attack vectors remain,
and therefore even this technology must be used cautiously.
In particular, Intel SGX is known to suffer from rollback
and forking attacks on stateful applications with persistent
storage [8], [27]. The key to a rollback attack is that when
the enclave is stopped, the data inside is lost. Data can be
persistently stored for later use by encrypting and storing them
in memory outside of the enclave, a process called sealing.
However, a malicious node may force the enclave to restart at
any time and load its memory from some state that is not the
most recent one. Forking attacks generalize rollback attacks in
that the malicious node may spawn multiple enclave instances
from the same sealed state and split the clients who interact
with the enclave to interact with different instances.

While rollback and forking attacks seem relevant to Fairy,
since TPCs store protocol and client state, Fairy is robust to
such attacks. If TPCs in Fairy crash or are forced to restart,
they do not need to use the locally persisted state to recover.
Instead, client-related state can be re-established by asking the
clients to re-register with a fresh symmetric key. Notice that
FTOB should guarantee liveness and input causality only to
correct clients, who provide their correct, most up-to-date state
with their registration. Protocol state, i.e., the latest delivered
sequence number, is relevant for updating the client state in the
right order without losing liveness. However, Byzantine nodes
are not expected to provide their enclaves with the correct
protocol state. To support a crash fault recovery, protocol state
can be recovered with a distributed storage protocol [27].

Other known attacks are denial-of-service (DoS) and side
channel attacks [9]] [34] [36]. The latter and their mitigation
are orthogonal and outside the focus of this work. DoS is
captured in our extended model (Section by the adversary
controlling the communication to and from the TPCs. This
attack would only render the TPC non-responsive would only
threaten the liveness of Fairy protocol if the number of faulty
nodes exceeds f, i.e., the fault tolerance of our system.

VIII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of Fairy im-
plementation with Mir, further referred to as Fair-Mir. In
particular, we examine the overhead of Fairy by comparing
Fair-Mir to plain Mir protocol implementation. We also com-
pare Fair-Mir with the state-of-the-art non-malleable commit-
reveal scheme [17], also implemented on top of Mir for a fair
comparison, further referred to as CR-Mir. We do not compare

Max batch size 50 KB (100 requests)
Cut batch timeout 10 ms

Checkpoint period 16

Watermark window size 64

Bucket rotation period 64

Client authenticated Encryption | AES-GCM 256

TPC & batch signatures 256-bit ECDSA

TABLE 1. Fairy configuration parameters used in evaluation.

Fair-Mir to threshold encryption protocols in [11]] [16]], since
the evaluation in [17]] shows that the commit-reveal scheme
clearly outperforms threshold encryption. We evaluate all
three protocols in a wide area network (WAN) of 16 client
machines and up to 16 node machines and in a local area
network (LAN) of 4 client and 4 node machines. Finally, we
perform LAN micro-benchmarks to stress the performance of
TPC under different parameters. Table [I| summarizes the used
configuration parameters for our performance evaluation.
LAN deployment We executed our evaluation in a local area
network of 4 node and 4 client machines. Nodes run on
Supermicro 5019-MR servers with a 3.4GHz 4-core E3-1230
V5 Intel CPU that provides SGX support. They are equipped
with 32 GB of memory and run Ubuntu Linux 20.04 LTS
Server. Client processes run on Haswell 2.4GHz 4-core, 8GB
memory machines with Ubuntu Linux (kernel version 4.4.0-
24). All machines have a 1 Gbps network connection. We use
docker for seamless deployment across all servers.

WAN deployment For our wide area network evaluation we
deployed 16 VMs for the clients and up to 16 VMs for the
nodes. They all run on Xeon 2.4GHz 4-core, 32 GB machines
with Ubuntu Linux (kernel version 4.15.0-118) and 1 Gbps
network connection. All virtual machines are deployed on
IBM Cloud, distributed across 16 distinct datacenters all over
the world. In this deployment we ran our enclaves with SGX
simulation mode as HW mode was not yet available. In a
preliminary test we experience similar performance between
hardware and software mode for our workload. Same as for
the LAN deployment, we use docker for seamless deployment
across all servers.

End-to-end evaluation. Clients submit requests in a close
loop, that is, they send their requests as soon as they are
notified by 2 f+1 nodes that their previous request is delivered.
Request payload size is fixed to 500 bytes, which corresponds
to the average Bitcoin transaction size [3]]. With the term end-
to-end latency, we refer to the latency form the moment the
clients send the request to the network until they are notified
by 2f+1 nodes that the request is delivered. We do not include
in end-to-end latency the latency of request preparation in the
client, as this was done asynchronously to allow clients to
submit requests fast enough to saturate the nodes.

We first evaluate latency in the WAN for an increasing
number of nodes. When deployed on all 16 nodes Fair-Mir
has an overhead of 4% compared to plain Mir. In particular,
the latency of the additional phases of Fair-Mir, processing
and disclosure, accounts in total only for 0.2% of end-to-end



latency. On the other hand CR-Mir has more than double
the latency of the other two protocols, since it requires
extra communication rounds. Latency profiling for the WAN
evaluation can be found in Table

In order to minimize the network latency and better observe
the overhead of Fairy we focus on a LAN evaluation of 4 nodes
for the rest of the section.

Figure [3] shows the average end-to-end latency and aver-
age throughput of Mir, Fair-Mir, and CR-Mir. We evaluate
all protocols by increasing request load until they reach
saturation. Load is increased by increasing the number of
client instances per client process and the number of client
processes. We observe that Fair-Mir reaches a maximum
throughput of 7.3K req/s, which suggests an overhead of
approximately 20% on Mir which achieves a peak throughput
of 9.3 K req/s, without significant overhead in latency. Latency
profiling of Fair-Mir can be found in Table It is worth
noticing that the latency of Fairy request processing and
request disclosure phases accounts for only 2% of the end-
to-end latency.

Fair-Mir outperforms by 66% CR-Mir in throughput, with
the latter only reaching 4.4K req/s. Moreover, CR-Mir has
double the latency of Mir and Fair-Mir. This is expected, since
CR-Mir runs two rounds of TOB, unlike Fair-Mir and Mir that
run only one TOB round.
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Fig. 3. Impact of Fairy on Mir and comparison to the commit-
reveal (CR-Mir) protocol [17].

Impact of TPC request processing. We micro-benchmark the
request processing phase (Section to estimate when it
becomes a bottleneck to Fair-Mir. In particular, for different
payload sizes, we invoke request processing with increasing
parallelism. As we can see in Figure[5|and Figure[d] increasing
payload sizes has a negative impact on the performance of
the request processing phase because the size of data that are
copied in the enclave per operation grows. Up to 8 parallel
invocations increase overall throughput. Higher parallelism
does not help, since we need to lock access to the client
state inside the TPC, which causes contention. To put that
into perspective, we co-plot in Figure [3] the peak throughput
in a LAN with 4 nodes. As we can see, even for larger
payloads (tens of KB) TPC can process thousands r/s, and,
with the selected payload size (500 B), Fairy does not suffer
any performance limitations due to request processing.

Scalability micro-benchmark. Finally, to estimate the per-
formance of Fair-Mir in larger deployments we isolate and

throughput [Kreq/s]
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number of parallel processing invocations

Fig. 4. Microbenchmarking of private request processing and
validation for increasing parallel processing invocations with
different payload sizes (p).
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Fig. 5. Microbenchmarking of private request processing

and validation for increasing payload size with 8 parallel

processing invocations.

micro-benchmark the request disclosure phase. Our evaluation
focuses on the added complexity of Fairy, which is affected by
the system scale only in the disclosure phase (Section
during which each TPC needs to verify O(n) signatures
per batch. In Figure [f] we plot the peak throughput request
disclosure can achieve with an increasing number of simulated
nodes, for different batch sizes. The number of nodes is
simulated by increasing the signatures per batch. Indeed, we
observe that throughput drops with an increasing number of
nodes, but this is amortized with increasing batch size. To
put this into perspective, we also plot Mir performance on a
LAN of 32-core VMs with increasing number of nodes. We
can see that, with similar batch sizes, Fairy disclosure phase
imposes a limit of 57.3K req/s on 97 simulated nodes, which
is approximately 70% of Mir throughput on the same scale.
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Fig. 6. Microbenchmarking of disclosure for an increasing
number of TOB nodes with different batch sizes (b).



Protocol | Processing | Ordering | Disclosure | End-to-End | Nodes
Mir - 35323 ms | - 1411.56 ms | 4
Fair-Mir | 0.75 ms 354.63 ms | 1.29 ms 1479.17 ms | 4
CR-Mir | - 367.40 ms | - 2985.65 ms | 4

Mir - 235.04 ms | - 935.16 ms 7
Fair-Mir | 0.81 ms 237.88 ms | 1.42 ms 1023.46 ms | 7
CR-Mir | - 245.54 ms | - 188259 ms | 7

Mir - 37584 ms | - 1602.47 ms | 16
Fair-Mir | 0.70 ms 35479 ms | 1.91 ms 1669.47 ms 16
CR-Mir | - 347.11 ms | - 3776.67 ms | 16

TABLE II. Latency profiling with 4, 7 and, 16 nodes in WAN for Fair-Mir with low load, below saturation.

mean 95p 99p pseudocode
Preparation | 0.1 ms 0.1 ms 0.3 ms Algl] lines[46:52]
Processing | 0.3 ms 0.6 ms 0.8 ms Alg2| lines[24:33]
Ordering 154 ms | 333 ms | 52.8 ms
Disclosure 1.0 ms 1.8 ms 2.0 ms Alg lines[35:47]
End-to-End | 194 ms | 409 ms | 51.7 ms

TABLE III. Latency profiling with 4 nodes in LAN for Fair-
Mir with 50% saturation load. Line numbers refer to Fairy
pseudocode in Appendix

IX. RELATED WORK

Causality under the crash fault-tolerance assumption was
introduced by Lamport [23]]. Under Byzantine faults, causality
was introduced by Reiter and Birman [32f], who outline a
protocol for causal total order broadcast in BFT systems by
combining total order broadcast with a public key threshold
cryptosystem, such that a client submits an encrypted request,
which is only revealed by combining decryption shares in a
round of communication after total order broadcast of the
encrypted request. Later Cachin et al. [11] refined the defi-
nition of causal total order broadcast and provided a provably
secure protocol based on labeled threshold cryptosystem with a
two-step delivery. The protocol was implemented in SINTRA
system [12]. More recently, Duan et al. proposed BEAT [16],
a group of practical asynchronous TOB protocols, including
one protocol which guarantees causality also using threshold
encryption. Solutions based on threshold cryptosystems, how-
ever, require extra rounds of communication to combine the
decryption shares. Fairy does not require any further communi-
cation rounds after total order broadcast. Moreover, threshold
cryptosystems are computationally expensive and require a
trusted setup of the threshold key shares. Such a setup requires
either a trusted third party, compromising decentralization,
or a distributed key-generation (DKG) protocol. The most
efficient asynchronous DKG protocol to date, to the best of
our knowledge, was introduced by Kokoris-Kogias et. al [22]]
with O(n?) communication and O(n*) bit complexity.

Causal total order broadcast is revisited by Duan et al. [17]]
who propose a group of protocols which replace threshold
encryption with symmetric cryptography improving efficiency
over [11]]. However, two of the protocols in [17] only guarantee

safety and liveness with benign, crash-fault clients and the
third needs strong synchrony assumptions to maintain liveness
with Byzantine clients. Fairy tolerates an arbitrary number
of Byzantine clients, making it suitable for a broader set of
applications, without imposing further synchrony assumptions
to the underlying TOB protocol.

Sender obfuscation and anonymity have been extensively
studied in the space of cryptocurrencies with a number of
techniques such as zero-knowledge proofs [29], ring sig-
natures [31], and decentralized mix services [33|]. Sender
obfuscation has not been addressed, however, so far in the
context of causal total order broadcast.

Kelkar et al., in their recent work [21]], add fairness to
ordering in a different context. Their protocol maintains the
actual receiving order for a fraction of nodes in the output
of total order broadcast, within a block of arriving requests.
The protocol pays for this by requiring at least 4f 4+ 1 nodes
to tolerate f faults. Similarly, Zhang et al. [37], maintain in
the output the ordering preferences of correct nodes. Notably,
though, neither of the two protocols can prevent front-running
attacks when the network is controlled by the adversary.

Trusted execution environments have been explored in BFT
systems for improving performance and fault-tolerance [5],
[20], [25] in a hybrid BFT/TEE model. Note that our model
does not mandate that a TOB process itself encapsulates a
TEE. Our system is built in a modular way and allows the use
of other TOB protocols including crash fault-tolerant and, as
evaluated in this paper, classical BFT TOB protocols.

Trusted execution environments against front-running at-
tacks have been introduced in Tesseract [6] in the context of
cryptocurrency exchange, by running the exchange protocol
confidentiality in a TEE. Similarly to Fairy, Tesseract uses
authenticated encryption to establish a confidential communi-
cation between the TEE and the client, obfuscating also the
client’s identify. However, Tesseract is tailored to cryptocur-
rency exchange and does not implement TOB.

Ekiden [14]] and Fabric Private Chaincode (FPC) [7] are
follow-up works which use TEEs to confidentiality execute
arbitrary smart contracts on dedicated nodes. Both Ekiden and
FPC do not reveal the transaction itself, which is executed
within the TEE, but, unlike Fairy, the do not fully implement
TOB, since they only order the encrypted output of execution.
Moreover, in FPC the client’s identity is not hidden and Ekiden



leaks transaction metadata by revealing the identity of the
smart contract to the blockchain nodes. This is necessary so
that consensus nodes can perform read write checks for each
smart contract. Ekiden guarantees liveness via an interactive
protocol, where the client needs to acknowledge that the TEE
send them the encrypted transaction output. Fairy, on the other
hand, does not rely on further interaction with the client after
the client has submitted their request. It is worth noticing that
Ekiden targets a stronger adversary which can compromise
a subset of TEEs. In order to guarantee forward secrecy,
a separate key committee runs a distributed key generation
protocol to generate a fresh key for each transaction. This
sub-protocol is orthogonal to Fairy.

X. CONCLUSION

This work has presented Fairy, a modular and efficient sys-
tem that extends total order broadcast protocols with fairness
properties, particularly, input causality and sender obfuscation.
To achieve this, we proposed a system that leverages modern
trusted execution technology to protect clients’ requests and
only reveals the contents once a request has been delivered to
the nodes of the network. We showed the feasibility of our
approach that uses Intel SGX and overcomes the limitations
of existing solutions. Fairy evaluation on top of Mir-BFT has
shown that the overhead of our approach is 20% throughput
and, thus, opens a new class of applications for BFT protocols.
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